
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 5, March 2008

Software Production Process for Safety Critical Software

Norman Schneidewind∗
Professor Emeritus, Naval Postgraduate School, Monterey, CA, 93942

DOI: 10.2514/1.34021

A software production model is developed that integrates process and product and is
designed to identify bottlenecks in the production process. Choke points can occur either
from process deficiencies or failure to identify and correct extant software defects. NASA
Goddard Space Flight Center satellite defect data is used in the analysis because the primary
aim is to apply the model to safety critical software. The model applies feedback control to
correct anomalies in process and product that may occur. Both predictions and actual defect
data are used to identify process and product behavior that do not meet expectations.

I. Introduction

ACCORDING to,1 software systems come and go through a series of passages that account for their inception,
initial development, productive operation, upkeep, and retirement from one generation to another. We focus on

the development and production phases and introduce something different in this research compared with articles
about software development process that correctly relate the effectiveness of the process to the quality of the product.
We go a step further and introduce the concept of the reliability of the process, both current and future. We perform
this analysis by using software defect data from the NASA Goddard Space Flight Center satellite project known as
JM1. These data are shown in Table 1. Our goal, recognizing the importance of integrating process and product,2 is
to identify production bottlenecks in the process that cause product delivery to be delayed. In addition, we identify
deficiencies in the defect removal process that can lead to product unreliability and delivery schedule delay.

The principal features of the production system are defined using process flow charts illustrated in Fig. 1 for a
software production and quality control operation. The flow of software modules is from left to right. Each phase
has a processing time measured in days and a defect rate. Our model assumes that defects introduced by a process
step may pass through downstream steps undetected until an inspection is performed.3

A. Comparison of Hardware and Software Production Processes
Some authors claim that software engineering is significantly different from software engineering. For example,

in,4 the authors claim that in hardware, the concern is with control of manufacturing defects; assessment of mean
time to failure of a product through wear or aging; and use of statistical sampling to provide quality predictions
in an environment of defined uncertainty. In general, these have limited applicability in software engineering. The
main reason for this is that in software engineering we are concerned with controlling the design process and not the
manufacturing process. We disagree because hardware engineering is not confined to controlling for manufacturing
defects. It is also concerned with controlling for design defects (e.g., semiconductor products), as in the case of
software.3,5,6 Secondly, software can wear and age, for example, the classic case of buffer overflow and the well-
known problem of having to restart a PC in order to reestablish a stable state. Thirdly, we suggest that noise,
temperature, electrical system irregularities, and the harshness of space, do not constitute defined uncertainties.

Received 13 August 2007; accepted for publication 19 February 2008. Copyright © 2008 by the American Institute of
Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright
claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. Copies of this paper may be
made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-9423/08 $10.00 in correspondence with the CCC.∗ieeelife@yahoo.com

72

SCHNEIDEWIND

Table 1 NASA Goddard Space Flight Center JM1 Satellite Defect Data.

phase I ti di Di j tj dj Dj

requirements analysis 1 6.6156 78 0.1902 1 65 26 0.4000
design 2 11.1708 8 0.0195 2 57 20 0.3509
coding 3 0.9685 20 0.0488 3 187 14 0.0749
development test 4 0.6577 161 0.3927 4 341 10 0.0293
integration 5 24.1259 4 0.0098 5 331 15 0.0453
reliability analysis 6 2.0246 33 0.0805 6 351 11 0.0313
system test 7 37.786 3 0.0073 7 66 14 0.2121
field deployment 8 6.6914 98 0.2390 8 62 10 0.1613
post-release 9 8.4667 5 0.0122 9 178 13 0.0730

10 61 7 0.1148
11 98 10 0.1020
12 56 9 0.1607
13 35 10 0.2857
14 34 12 0.3529
15 18 8 0.4444
16 41 7 0.1707
17 41 9 0.2195
18 398 3 0.0075
19 380 4 0.0105
20 377 6 0.0159
21 373 8 0.0214
22 367 8 0.0218
23 365 6 0.0164
24 365 9 0.0247
25 359 5 0.0139
26 357 5 0.0140
27 356 7 0.0197
28 501 6 0.0120
29 355 6 0.0169
30 355 5 0.0141

Actually, with modification to account for software’s peculiarities (e.g., large number of execution paths), we find the
hardware model production process model to be a useful guide for conceptualizing the software production process
in Fig. 1.

In the following subsections we describe the important characteristics of the software production process, based
on other researchers’ work that we address in our research.

1. Process Flow Analysis
The processes and activities associated with production are used in analyzing and improving process flows of

software and information about software. Flow analysis is an abstraction of the production process that neglects the
detail concerned with individual items of product, but considers the collection as a flow. Thus most of the parameters
of the model relate to averages over time. One of the primary purposes of a flow-process chart like the one in Fig. 1
is to identify bottlenecks and to exert process and product quality control.5,6

2. Product Flow Analysis
A product comprises all artifacts that describe the software being produced. These include the requirements,

designs, code, etc. to be delivered to the customer. Products have the following attributes: content, which represents
some measure of ‘how much is there’; quality, which represents ‘fitness for purpose’; and cost, which represents
the various costs (e.g., time consumed in performing product activities). As the project progresses, changes occur
according to the phases carried out in the process.7 In Fig. 1, product attributes are defects, defect rate, and time
spent in phases and in correcting defects.

73

SCHNEIDEWIND

Fig. 1 Software production process; NASA JM1 software system efficiency phase efficiency vs. software production
phase.

3. Feedback Control
Feedback control of the software production process is shown in Fig. 1 wherein control is exercised by reworking

modules that do not meet quality and reliability limits. This concept is in the spirit of Miller et al.8 As a discipline,
control engineering develops strategies, which are capable of driving the behavior of a software system to a desired
target behavior, such as meeting reliability specifications. Feedback control refers to the set of techniques that use
knowledge of the software system states (e.g., state of module reliability) and outputs (e.g., corrected modules) to
determine a set of future module and defect inputs that will lead to the desired target behavior.

Cangussu et al. model consists of two components: a feedback control portion and a model parameter estimation
portion.9 Their focus was on the assessment of the goodness of the parameter estimates and model predictions and
their utility in the management of the system test phase. Estimates of the number of residual defects are used to
control the quality of the product being released. Estimates of the number of defects in the application when the
test phase began and at the current checkpoint were obtained. In addition, predictions were made of the reduction in
the number of remaining defects. The parameter estimates and reliability predictions assist management in planning
the test. Our research relates the attributes of software reliability model parameter estimates to defect reduction
prediction accuracy. When sufficient accuracy is obtained, the test phase exerts feedback to control module quality
in Fig. 1.

74

SCHNEIDEWIND

4. Characteristics of the Test Phase
Over the course of the test phase, a manager establishes checkpoints where he or she can observe quality measures

and compare these with those expected by specifications. According to this comparison, the manager decides for
changes in the test environment necessary to better meet reliability objectives. A software production model will
provide quantitative information to the manager about the evolution of the test process relative to the specification
and can identify specific changes necessary to meet a pre-specified quality objective.10 We will make comparisons
of both specified process and product reliability with achieved reliability when our model results are analyzed.

II. Software Production Process Model Development
First some definitions that are used in the equations that follow and in Fig. 1.

A. Definitions
1. Numbers

x: number of modules inputted to phase 1 = demand for module production at each phase
rmi: remaining number of modules in phase i that has not been processed due to the presence of defects
yi: number of modules output of facility i
Xi: expected number of modules corrected in phase i
di: number of defects discovered in phase i
dj: number of defects per module j
dcj: number of defects that have been corrected for module j
rdj: remaining number of defects that has not been corrected for module j
N: total number of modules in software release
n: number of modules in sample (n < N)
Nc: number of modules corrected in software release
Np: number of phases
nc: number of parallel production channels

2. Rates
λ1 : module mean input rate to phase 1 (modules per day)
Di: defect discovery rate in phase i (defects per day)
Dj: defect discovery rate in module j (defects per day)
c: defect correction rate (defects per module)

3. Times
ti: expected time a module spends in phase i (days)
tj: time required to correct defects in module j (days)
T: expected time spent in system correcting defects (days)
t: Future time when predicted quantity is to occur

4. Probabilities
p (ti): probability of spending ti time in phase i
p (c): probability of correcting defects

5. Metrics
PEi: phase efficiency in phase i
Ri: process reliability of phase i
Rj: product reliability of module j
Rg: reliability goal (e.g., .95)
R (t): predicted reliability to occur at time t
F (t): process cumulative defects predicted to occur at time ti

75

SCHNEIDEWIND

6. Software Reliability Model11

α: Failure rate at the beginning of interval s
β: Negative of derivative of failure rate divided by failure rate (i.e., relative failure rate)
s: Starting interval for using observed failure data in parameter estimation
Xs−1: observed failure count in the range [1, s − 1]
T : total time spent correcting defects in modules in nc channels
ti: expected time a module spends in phase i
tj: time required to correct defects in module j

B. Equations
Equations are classified by those used in production and defect analyses for product and process and those used

in software reliability prediction.

1. Production and Defect Analysis for Process and Product
The defect discovery rate in phase i is given by:

Di = di∑Np

i=1 di

(1)

And the defect correction rate is computed by:

c = Nc/N (2)

The defect discovery rate in module j is:

Dj = dj/tj (3)

It is important to exercise control over the quality of modules produced in the production process as shown in
Fig. 1. Therefore, from equation (3), we compute the upper (UCL) quality control limit from the mean and standard
deviation:

UCL = D̄j + 3SD(Dj) (4)

We want to estimate the expected number of module inputs corrected in phase i, based on the number x1 that are
inputted to phase 1, and the probability of correction, as follows:

Xi = x1p(c) (5)

Now we assume that the time to correct defects in phase i ti is exponentially distributed, so that the probability of
defect correction is:

pi(c) = Die
−Diti c (6)

Then using equations (5) and (6), the expected number of modules corrected in phase i is equal to:

Xi = x1Die
−Ditsc (7)

Then using equation (7), the expected output in phase i, based on the loss in output due to defect and the gain
attributed to defect correction, is computed by:

yi = x1(1 − D1)(1 − D2), . . . , (1 − Di) + Xi (8)

Then the remaining module input in phase i that has not be processed due to the presence of defects is:

ri = x − yi (9)

In Fig. 1, the output at the facility i should obey the demand constraint (i.e., input at phase1) this phase:

yi ≥ x1 (10)

76

SCHNEIDEWIND

We need to compute the input rate of modules N into the system in phase 1, using the total time to correct defects T:

λ1 = N/T (11)

Phase efficiency in phase i is determined by the relationship between output and demand:

PEi = yi/x1 (12)

Assuming the time spent in phase i is exponentially distributed, and using equation (11), we have the probability of
this time:

p(ti) = λ1e
−λ1ti (13)

The expected time modules spend in the system in all channels correcting defects, as shown in Fig. 1, is estimated by:

T =
m∑

j=1

tj (14)

Since we do not want modules to be languishing in the production system for more than, let us say 365 days, the
number of channels required (rounded up) is computed by:

nc = T/365 (15)

Using equation (6) we estimate the expected number of defects corrected in phase i as:

dci = dip(c) = di Die
−Diti c (16)

Next, using equation (16), we compute the remaining defects, that is, the number that have not been corrected in
phase i:

rdi = di − dci (17)

It is important to assess the empirical reliability from two standpoints: 1) with respect to the process in each phase i
and 2) with respect to the product for each module j.

For 1) we have:

Ri = 1 −
(

di∑n
i=1 di

)
(18)

And for 2) we have:

Rj = 1 −
(

dj∑m
j=1 dj

)
(19)

2. Software Reliability Prediction
We use two approaches to making predictions about future process and product reliabilities because experience has

shown that a single approach does not always achieve minimum prediction error. One approach uses the minimization
of the likelihood function to estimate model parameters.12 The second approach uses the SMERFS software reliability
tool to operate on the likelihood function using a minimum least square errors criterion.13 Both approaches were
used for all predictions. In all cases, except for the product reliability prediction, the first approach was superior. For
the one exception, we provide both predictions.

Using the first approach, we estimate the model parameters α, β, and s, from the process and product defect data,
and predict reliability in equation (20) with a C++ program we wrote.14 Both process and product reliability are

77

SCHNEIDEWIND

predicted, where the time t will be ti for the process case and tj for the product case in equation (20). In the second
approach, the SMERFS tool is employed, using the same procedure.

R(t) = e
−[α

β
[e−β(t−s+1)−e−β(t−s+2)]] (20)

A second prediction metric is cumulative defects shown in equation (21). We made predictions using the two
approaches for process defects. We were unable to obtain realistic predictions (i.e., excessive prediction error) for
product cumulative defects.

F(t) = (α/β)
[
1 − e−β(t−s+1)

] + Xs−1 (21)

C. Results of Software Production Analysis
We present a series of plots designed to illuminate important characteristics of process and product efficiency and

reliability. First, in Fig. 1, we show phase efficiency plotted against phase that indicates that the efficiency of the
design and coding phases is relatively low. This means that output is low relative to input for these phases. This could
be caused either by low productivity in theses phases or by a requirement to design and code complex software.

Next, in Fig. 2, we want to determine whether the probability of correcting defects tracks the probability of time
spent in phases, across phases. In Fig. 2 this is the case. If this had not been the case, it would be indicative of
problems in the defect correction process.

Now the focus shifts to the correction of defects in modules, as shown in Fig. 3. Here we provide an upper control
limit (UCL) computed from the mean and one standard deviation of the defect rate. The plot delineates which modules
meet the quality standard and which do not. In addition, the figure indicates that it would be infeasible to meet the
module processing requirements in a single production channel. Thus, in Fig. 3 we have computed the number of
parallel channels needed. These channels are depicted in Fig. 1.

Figure 4 reveals an alarming situation: for the development test phase, defect correction is way behind defect
discovery. This could be the result of ineffective testing in this phase or modules that reach this phase that are defect
prone.

Fig. 2 NASA JM1 software: probability of spending time ti in phase i[p(ti)] and probability of correcting defects in
phase l[pi(c)] vs. i.

78

SCHNEIDEWIND

Fig. 3 NASA software JM1: module defect rate Dj vs. module number j.

Fig. 4 NASA software JM1: defect count vs. phase i.

79

SCHNEIDEWIND

Fig. 5 NASA JM1 software: actual product reliability Rj vs. module j.

Fig. 6 NASA JM1 software: process reliability Ri vs. phase i.

80

SCHNEIDEWIND

Fig. 7 NASA JM1 software: product reliability for module j R(t) vs. time t .

Fig. 8 NASA JM1 software: process cumulative failures F (t) vs. time in phase i ti .

81

SCHNEIDEWIND

Fig. 9 NASA JM1: software: process reliability Ri vs. time spent in phase i (ti).

In Fig. 5 we address the problem of identifying errant modules. We screen them by showing whether module
reliability is below the reliability limit. In this case there are three such modules but fortunately reliability growth is
demonstrated across modules.

Figure 6 demonstrates that while reliability growth may be demonstrated by individual modules, there can still
be process reliability problems. In this case there are four phases below the reliability limit, necessitating a review
of these processes by software engineering management.

In Fig. 7 we see the situation mentioned earlier of the reliability prediction approach using SMERFS (Series 3)
achieving better prediction accuracy for product reliability, particularly during early values of t . This result points
up the fact that it is wise to use more than one model when making software reliability predictions so that we can
see whether one prediction would confirm another. For example, in the prediction range, the two approaches yield
essentially the same result, despite the fact that the parameter values are vastly different.

In Fig. 8 the things to notice are: 1) predicted process cumulative defects provides an upper bound on the actual
defects (therefore, it is wise to use a prediction as a bound, even if prediction accuracy is not outstanding) and 2)
the prediction range corresponds to additional time allocated to the reliability analysis phase, because this phase of
software production is usually given short shrift. A similar principle is illustrated in Fig. 9. In this case the predicted
process reliability provides a lower bound on the actual reliability. Thus we could use the prediction to give us the
minimum time that must be spent in each phase.

III. Summary
1. Phase efficiency can vary over phases. Thus this information can be used to identify phases that are in need

of process correction.
2. It is important to see whether correcting defects tracks time spent in phases. If this were not the case, it could

indicate that the production process is not producing expected benefits.
3. Defect rate should be examined to determine how many production channels are required to meet module

production quotas.

82

SCHNEIDEWIND

4. It is critical to analyze defect count removal in each phase to see whether there are phases falling behind in
correcting defects.

5. Over all modules, we need to ascertain whether there is reliability growth and identify for further quality
processing modules that do not meet this criterion.

6. We must identify process for process enhancement, phases that do not meet the reliability limit.
7. We must take care, when predicting module reliability, to use more than one model because different models

produce different predictions; we should apply the most accurate model.
8. We can use process predicted cumulative failures to advantage in providing an upper bound to actual failures.
9. Similarly, predicted process reliability can provide a lower bound to the actual reliability.

References
1Scacchi, W., “Process Models in Software Engineering”, J. Marciniak (ed.), Encyclopedia of Software Engineering, 2nd,

Edition, John Wiley and Sons Inc., New York, February 2001.
2Keller, T. and Schneidewind, N. F., “A SuccessfulApplication of Software Reliability Engineering for the NASA Space Shut-

tle”, Software Reliability Engineering Case Studies, International Symposium on Software Reliability Engineering, November
3, Albuquerque, New Mexico, November 4, 1997, pp. 71–82.

3Jensen, P. A., Operations Management/Industrial Engineering, Internet, 2004.
4Krause, P., Freimut, B., and Suryn, W., “New Directions in Measurement for Software Quality Control,” step, p. 129, 10th

International Workshop on Software Technology and Engineering Practice, 2002.
5Monks, J. G., Operations Management, 2nd Edition, McGraw-Hill, 1996.
6Turner, W. C., Mize, J. H., and Nazemetz, J. W., Introduction to Industrial and Systems Engineering, 3rd Edition, Prentice

Hall, 1993.
7Kirk, D., “A Flexible Software Process Model,” ICSE, pp. 57–59, 26th International Conference on Software Engineering

(ICSE’04), 2004.
8Miller, S. D., DeCarlo, R. A., and Mathur, A. P., “Modeling and control of the incremental software test process”, Computer

Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International, Vol. 2, 28–30
September 2004, pp. 156–159.

9Cangussu, J. W., Karcich, R. M., Mathur, A. P., and DeCarlo, R. A., “Software Release Control using Defect Based Quality
Estimation,” issue, pp. 440–450, 15th International Symposium on Software Reliability Engineering (ISSRE’04), 2004.

10Cangussu, J.W., DeCarlo, R.A., and Mathur,A.P., “Using sensitivity analysis to validate a state variable model of the software
test process”, IEEE Transactions on Software Engineering, Vol. 29, No. 5, May 2003, pp. 430–443.

11Schneidewind, N. F., “Reliability Modeling for Safety Critical Software”, IEEE Transactions on Reliability, Vol. 46, No.1,
March 1997, pp. 88–98.

12Schneidewind, N. F., “Predicting shuttle software reliability with parameter evaluation” Innovations Systems Software
Engineering, Springer-Verlag London Limited 2007.

13Farr, W. H., and Smith, O. D., Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) Users
Guide, NAVSWC TR-84-373, Revision 2, Naval Surface Warfare Center, Dahlgren, Virginia.

14Schneidewind, N. F., “Experience Report on Using Object-Oriented Design for Software Maintenance”, Journal of Software
Maintenance and Evolution, (Wiley InterScience), 7 June 2007, Vol. 19, No. 3, pp. 183–201.

Michael Hinchey
Associate editor

83

